AD-A253 822 o @ T

Symbolic Boolean Manipulation with

Ordered Binary Decision Diagrams
Randal E. Bryant A :
July 1992 DT]
CMU-CS-92-160 E LECTE

AUG 12 1992

School of Computer Science
Carnegie Mellon University
Piusburgh, PA 15213

This paper has been accepted for publication in ACM Computing Surveys. It was written
while on leave at Fujitsu Laboratories, Kawasaki, Japan. This report supersedes
CMU-CS-91-162.

Abstract

Ordered Binary Decision Diagrams (OBDDs) represent Boolean functions as directed acyclic
graphs. They form a canonical representation, making testing of functional properties such as
satisfiability and equivalence straightforward. In most application, their size remains manageable.
A number of operations on Boolean functions can be implemented as graph algorithms on OBDD
data structures. Using OBDDs, a wide variety of problems can be solved through symbolic
analysis. First, the possible variations in system parameters and operating conditions are encoded
with Boolean variables. Then the system is evaluated for all variations by a sequence of OBDD
operations. Researchers have thus solved a number of problems in digital system design, finite
state system analysis, artificial intelligence, and mathematical logic. This paper describes the
OBDD data structure, and surveys a number of applications that have been solved by OBDD-based

symbolic analysis.
I2—-20963

LT 92 8 §° 006

T

pred Lk
.3 P
: bt
o - [
.4 - 2y s
2
- N ,.”"‘
wi & e R
b -
2 X
s e
i &
A

Keywords: Binary decision diagrams, branching programs, symbolic manipulation, Boolean
functions, Boolean algebra

1. OBDD REPRESENTATION 3
1.1. BimaryDecisionDiagrams 3
12. Ordering and ReAUCING oo v v oot e e e e 4
13. Effectof Varisble Orderingouumuuunn.. s
14. Complexity Characterigtics¢..0eeuun. 7
15. Refincmentsand Variations¢.000... 10
2. OPERATIONS 10
3. CONSTRUCTION AND MANIPULATION 1
31. The APPLYOperationt it ittt it e e e nnen e 11
32. The RESTRICTOperation0 i v i ittt i neneenn 14
33. Derived Operationsttt vt v anneennnnns 15
34. Pefformance Characteristics0 ei e 15
35. Implementation Techniques 15
4. REPRESENTING MATHEMATICAL SYSTEMS 16
4.1. Encodingof Finitte Domains 17
4. QOISttt e e e e e e et et e e e 18
43, Relstionsttt ittt ittt e e e e e e 19 \
S. DIGITAL SYSTEM DESIGN APPLICATIONS 20
S0, VRHBCRION . . « . v e v e et e e e e e e e e 20 ! o
52. Design Bror COMECtion« oo vvve e onnnennnnnnn.. 20 8
5.3, Scnsitivity ADAYSISi i e 21 0
54. Probebilistic Analysis0000iren... 22 g
6. FINITE STATE SYSTEM ANALYSIS 26 ;
7. OTHER APPLICATION AREAS 29
8. AREAS FOR IMPROVEMENT 29 —
9. SUMMARY Statement A per telecon Chahira Hopper 30 7 Codes
REFERENCES WL/AAAT 31 and [or
WPAFB,OH 45433 acial
INTRODUCTION NWW 8/10/92 l n/" J
Many tasks in digital system design, combinatorial optimization, mathematical logic, and ar-
tificial intelligence can be formulated in terms of operations over small, finite domains. By
introducing a binary encoding of the clements in these domains, these problems can be fur-
ther reduced to operations over Boolean values. Using a symbolic representation of Boolean
functions, we can express a problem in a very general form. Solving this generalized problem
via symbolic Boolean function manipulation then provides the solutions for a large number of
specific problem instances. Thus, an efficient method for representing and manipulating Boolean
functions symbolically can lead to the solution of a large class of complex problems.
Ordered Binary Decision Diagrams (OBDDs) [Bryant 1986] provide one such representation.
This representation is defined by imposing restrictions on the the Binary Decision Diagram
(BDD) representation introduced by Lee' [Lee 1959] and Akers [Akers 1978], such that the
resulting form is canonical. These restrictions and the resulting canonicity were first recognized
!Lec represented Boolean functions as Binary Decision Programs, a form of straight-line program. Such a
program can be viewed a8 a linear ordering of the vertices in a directed acyclic graph, and hence the distinction
between these two forms is minor.
2 DTI0 QUALITY INSPROTES |

by Fortune, Hopcroft, and Schmidt [Fortune et al 1978). Functions are represented as directed
acyclic graphs, with internal vertices corresponding to the variables over which the function
is defined and terminal vertices labeled by the function values O and 1. Although the OBDD
representation of a function may have size exponential in the number of variables, many useful
functions have more compact representations.

Operations on Boolean functions can be impiemented as graph algorithms operating on OBDDs.
Tasks in many problem domains can be expressed entirely in terms of operations on OBDDs,
such that a full enumeration of the problem space (e.g., a truth table, state transition graph, or
search tree) need never be constructed. Researchers have solved problems using OBDDs that
would not be possible by more traditional techniques such as case analysis or combinatorial
search.

To date, most applications of OBDDs have been in the areas of digital system design, verification,
and testing. More recently, interest has spread into other areas such as concurrent system design,
mathematical logic, and artificial intelligence.
‘This paper provides a combined tutorial and survey on symbolic Boolean manipulation with
OBDDs. The next three sections describe the OBDD representation and the algorithms used
to construct and manipulate them. The following section describes several basic techniques for
representing and operating on a number of mathematical structures, including functions, sets, and
. relations, by symbolic Boolean manipulation. We illustrate these techniques by describing some
of the applications for which OBDDs have been used to date and conclude by describing further
areas for research. Although most of the application examples involve problems in digital system
design, we believe that similar methods can be applied to a variety of application domains. For
- background, we assume only that the reader has a basic knowledge of Boolean functions, digital
.~ logic design, and finite automata.

1. OBDD REPRESENTATION

Binary decision diagrams have been recognized as abstract representations of Boolean functions
for many years. Under the name “branching programs” they have been studied extensively by
complexity theorists [Wegener 1988; Meinel 1990]. The key idea of OBDDs is that by restricting
the representation, Boolean manipulation becomes much simpler computationally. Consequently,
they provide a suitable data structure for a symbolic Boolean manipulator.

1.1. Binary Decision Diagrams

A binary decision diagram represents a Boolean function as a rooted, directed acyclic graph. As
an example, Figure 1 illustrates a representation of the function f(z, z2, z3) defined by the truth
table given on the left, for the special case where the graph is actually a tree. Each nonterminal
vertex v is labeled by a variable var(v) and has arcs directed toward two children: lo{v) (shown
as a dashed line) corresponding to the case where the variable is assigned 0, and hi(v) (shown
as a solid line) corresponding to the case where the variable is assigned 1. Each terminal vertex
is labeled O or 1. For a given assignment to the variables, the value yielded by the function is
determined by tracing a path from the root to a terminal vertex, following the branches indicated

3

Lo
[

X2 x3

X2

- -I-I-2

etk b et DO O D
OO = OO
O QOO

Figure 1: Truth Table and Decision Tree Representations of a Boolean Function. A dashed
(solid) tree branch denotes the case where the decision variable is O (1).

by the values assigned to the variables. The function value is then given by the terminal vertex
label. Due to the way the branches are ordered in this figure, the values of the terminal vertices,
read from left to right, match those in the truth table, read from top to bottom.

12. Ordering and Reducing

For an Ordered BDD (OBDD), we impose a total ordering < over the set of variables and
require that for any vertex u, and either nonterminal child v, their respective variables must be
ordered var(u) < var(v). In the decision tree of Figure 1, for example, the variables are ordered
z; < z3 < z3. In principle, the variable ordering can be selected arbitrarily—the algorithms will
operate correctly for any ordering. In practice, selecting a satisfactory ordering is critical for the
efficient symbolic manipulation. This issue is discussed in the next section.

We define three transformation rules over these graphs that do not alter the function represented:

Remove Duplicate Terminals: Eliminate all but one terminal vertex with a given label and
redirect all arcs into the eliminated vertices to the remaining one.

Remove Duplicate Nonterminals: If nonterminal vertices u and v have var(u) =var(v), lo(u) =
lo(v), and hi(u) = hi(v), then eliminate one of the two vertices and redirect all incoming
arcs to the other vertex.

Remove Redundant Tests: If nonterminal vertex v has lo(v) = hi(v), then eliminate v and
redirect all incoming arcs to lo(v).

Starting with any BDD satisfying the ordering property, we can reduce its size by repeatedly
applying the transformation rules. We use the term “OBDD” to refer to a maximally reduced
graph that obeys some ordering. For example, Figure 2 illustrates the reduction of the decision
tree shown in Figure 1 to an OBDD. Applying the first transformation rule (A) reduces the
cight terminal vertices to two. Applying the second transformation rule (B) eliminates two
of the vertices having variable z3 and arcs to terminal vertices with labels 0 (lo) and 1 (hi).

4

(= (1)
o

g

%) (x
1P
0 1

A). Duplicate Terminals B). Duplicate Nonterminals C). Redundant Tests

1

Figure 2: Reduction of Decision Tree to OBDD. Applying the three reduction rules to the tree
of Figure 1 yields the canonical representation of the function as an OBDD.

Applying the third transformation rule (C) eliminates two vertices: one with variable z; and
one with variable z;. In general, the transformation rules must be applied repeatedly, since each
transformation can expose new possibilities for further ones.

The OBDD representation of a function is canonical—for a given ordering, two OBDDs for a
function are isomorphic. This property has several important consequences. Functional equiv-
alence can casily be tested. A function is satisfiable if and only if its OBDD representation
does not correspond to the single terminal vertex labeled 0. Any tautological function must
have the terminal vertex labeled 1 as its OBDD representation. If a function is independent of
variable z, then its OBDD representation cannot contain any vertices labeled by z. Thus, once
OBDD representations of functions have been generated, many functional properties become
casily testable.

As Figures 1 and 2 illustrate, we can construct the OBDD representation of a function given its
truth table by constructing and reducing a decision tree. This approach is practical, however,
only for functions of a small number of variables, since both the truth table and the decision tree
have size exponential in the number of variables. Instead, OBDDs are generally constructed by
“symbolically evaluating” a logic expression or logic gate network using the APPLY operation
described in Section 3.

13. Effect of Variable Ordering

The form and size of the OBDD representing a function depends on the variable ordering. For
example, Figure 3 shows two OBDD representations of the function denoted by the Boolean
expression a) - by + a3-b; + a3-by, where - denotes the AND operation and + denotes the OR
operation. For the case on the left, the variables are ordered a; < b < a3 < b; < a3 < by, while
for the case on the right they are ordered a; < a3 < a3 < by < by < b5.

We can generalize this function to one over variables ay,...,a, and b,...,5, given by the

Figure 3: OBDD Representations of a Single Function for Two Different Variable Orderings.

expression:

a1-b +a2-bp+ -+ anby
Generalizing the first variable ordering t0 a; < & < -+ < a, < b, yiclds an OBDD with
2n nonterminal vertices—one for each variable. Generalizing the second variable ordering to
a; < -+ < @y < b <--- < by, On the other hand, yields an OBDD with 2(2" — 1) nonterminal
vertices. For large values of n, the difference between the linear growth of the first ordering
versus the exponential growth of the second has a dramatic effect on the storage requirements
and the efficiency of the manipulation algorithms.
Examining the structure of the two graphs of Figure 3, we can sec that in the first case the
variables are paired according to their occurrences in the Boolean expression a;-b; + az-b2 +a3-bs.
Thus, from every second level in the graph, only two branch destinations are required: one to
the terminal vertex labeled 1 for the case where the corresponding product yields 1, and one to
the next level for the case where every product up to this point yields 0. On the other hand, the
first 3 levels in the second case form a complete binary tree encoding all possible assignments to
the a variables. In general, for each assignment to the a variables, the function value depends in
a unique way on the assignment to the b variables. As we generalize this function and ordering
t0 one over 2n variables, the first n levels in the OBDD form a complete binary tree.

Most applications using OBDDs choose some ordering of the variables at the outset and construct
all graphs according to this ordering. This ordering is chosen ecither manually, or by a heuristic
analysis of the particular system to be represented. For example, several heuristic methods have
been devised that, given a logic gate network, genenally derive a good ordering for variables
representing the primary inputs. [Fujita et al 1988; Malik et al 1988]). Others have been
developed for sequential system analysis [Jeong et al 1991). Note that these heuristics do not

6

Function Class ~ Complexity

N Best Worst
Symmetric linear quadratic
Integer Addition (any bit) linear exponential

Integer Multiplication (middle bits) | exponential exponential

Table 1: OBDD complexity for common function classes.

need to find the best possible ordering—the ordering chosen has no effect on the correctness of
the results. As long as an ordering can be found that avoids exponential growth, operations on
OBDDs remain reasonably efficient.

14. Complexity Characteristics

OBDDs provide a practical approach to symbolic Boolean manipulation only when the graph
sizes remain well below the worst case of being exponential in the number of variables. As the
previous examples show, some functions are sensitive to the variable ordering but remain quite
compact as long as a good ordering is chosen. Furthermore, there has been ample empirical
evidence indicating that many functions encountered in real applications can be represented
efficiently as OBDDs. One way to more fully understand the strengths and limitations of
OBDD:s is to derive lower and upper bounds for important classes of Boolean functions.

Table 1 summarizes the asymptotic growth rate for several classes of Boolean functions, and
their sensitivity to the variable ordering. Symmetric functions, where the function value depends
only the number of arguments equal to 1, are insensitive to the variable ordering. Except for
the trivial case of constant functions, these functions have graphs ranging between linear (e.g.,
parity) and quadratic (e.g., at least half the inputs equal 1).

We can consider each output of an n-bit adder as a Boolean function over variables ao, ay,...,a,-1,
representing one operand, and b, by, ..., b1, representing the other operand. The function for
any bit has OBDD representations of linear complexity for the ordering ap < by < a; < b <
+++ < Gy-1 < by_y, and exponential complexity for the ordering ag < --- < ap-1 < bp < -+ <
b.-1. In fact, these functions have representations similar to those for the function shown in
Figure 3.

The Boolean functions representing integer multiplication, on the other hand, form a particularly
difficult case for OBDDs. Regardless of the ordering, the Boolean function representing either of
the middle two outputs of an n-bit multiplier have exponential OBDD representations. [Bryant
1991].

Upper bounds for othe: classes of Boolean functions can be derived based on the structural prop-
erties of their logic network realizations. Berman [Berman 1989] and more recently McMillan
[McMillan 1992] have derived useful bounds for several classes of “bounded width” networks.
Consider a network with n primary inputs and one primary output consisting of m “logic blocks.”
Each block may have multiple inputs and outputs. Primary inputs are represented by “source”

Figure 4: Linear Arrangement of Circuit Computing Most Significant Bit of Integer Addi-
tion

blocks with no input and one output. As an example, Figure 4 show™s a network having as
output the most significant sum bit of an n-bit adder. This network consists of a carry chain
computing the carry input c,- into the final stage. Blocks labeled “2/3” compute the MAJOR-
ITY function having 1 as output when at least two inputs are 1. The output is computed as the
ExcLUSIVE-OR of the most significant bits of the inputs and c,;.

Define a linear arrangement of the network as a numbering of the blocks from 1 to m such
that the block producing the primary output is numbered last. Define the forward cross section
at block ¢ as the total number of wires from an output of a block j such that j < ¢ to an input
of a block k such that ¢ < k. Define the forward cross section w, of the circuit (with respect
to an arrangement) as the maximum forward cross section for all of the blocks. As the dashed
line in Figure 4 shows, our adder circuit has a forward cross section of 3. Similarly, define the
reverse cross section at block i as the total number of wires from an output of a block j such that
J > i to an input of a block k such that : > k. In arrangements where the blocks are ordered
topologically (the only case considered by Berman), such as the one shown in Figure 4, the
reverse cross section is 0. Define the reverse cross section w, of the circuit (with respect to an
arrangement) as the maximum reverse cross section for all of the blocks. Given these measures,
it can be shown that there is an OBDD representing the circuit function with at most n2*s%™
vertices. Furthermore, finding an arrangement with low cross section leads to a good ordering
of the function variables—namely the reverse of the ordering of the corresponding source blocks
in the arrangement.

This bound based on network realizations leads to useful bounds for a variety of Boolean func-
tions. For example, functions having realizations with constant forward cross section and zero
reverse cross section, such as the adder circuit of Figure 4, have linear OBDD representations.
A symmetric function of n variables can be realized by a circuit having forward cross section
2 + logn and reverse cross section 0. This circuit consists of a series of stages to compute the
total number of inputs having value 1, encoding the total as a [log, n]-bit binary number. This
realization implies the quadratic upper bound in OBDD size stated in Table 1.

Figure 5 shows an application of this result for a circuit with non-zero reverse cross section.
This circuit shows a general realization of the Within-K function, where K is some constant
such that 0 < K < n. For inputs zo, z;,...,2Z.-, this function yields 1 if there are two inputs -
z; and z, equal to0 1 such that ¢ equals i + j mod n for some value j such that 0 < j < K. As
Figure 5 illustrates, this function can be computed by a series of blocks arranged in a ring, where

Figure 5: Linear Arrangement of Within-K Ring Circnit. As shown by the dashed line, the
circuit has forward cross section 2 + [log, K] and reverse cross section [log, K.

cach block B; has as outputs a 1-bit value s; and a k-bit integer value L;, where k = [log, K:

l, Z¢=1ML.'_1¢0
Si-1, otherwise

{K—-l, ;=1

8 =

L, = Lian—-1, z;=0and L;_, >0

0, otherwise.

In this realization, each L; signal encodes the number of remaining positions with which the
most recent input value of 1 can be paired, while each s; signal indicates whether a pair of 1
input values within distance K has occurred so far. To realize the modular proximity measure,
output L, of the final stage is routed back to the initial stage. Note that although this circuit
has a cyclic structure, its output is uniquely defined by the input values. As the dashed line
indicates, this ring structure can be “flattened” into a linear arrangement having forward cross
section k + 2 and reverse cross section k. This construction yields an upper bound of (8 K4¥)n
on the OBDD size. For constant values of K, the OBDD is of linear size, although the constant
factor grows rapidly with K.

McMillan has generalized this technique to tree arrangements in which the network is organized
as a tree of logic blocks with branching factor b and with the primary output produced by the
block at the root. In such an arrangement, forward (respectively, reverse) cross section refers to
wires directed toward (respectively, away flgm) the root. Such an arrangement yields an upper
bound on the OBDD size of n [2*n*-1] """ . The upper bound for the linear arrangement is
given by this formula for b = 1. Observe that for constant values of b, w;, and w,, the OBDD -
size is polynomial in n.

These upper bound results give some insight into why many of the functions encountered in
digital design applications have efficient OBDD representations. They also suggest strategies for
finding good variable orderings by finding network realizations with low cross section. Results
of this form for other representations of Boolean functions could prove useful in characterizing
the potential of OBDDs for other application domains.

9

LS. Refinements and Variations

In recent years, many refinements to the basic OBDD structure have been reported. These
include using a single, multi-rooted graph to represent all of the functions required [Brace et al
1990; Karplus 1989; Minato et al 1990; Reeves and Irwin 1987], adding labels to the arcs
to denote Boolean negation [Brace et al 1990; Karplus 1989; Minato et al 1990; Madre and
Billon 1988] and generalizing the concept to other finite domains [Srinivasan et al 1990). These
refinements yield significant savings in the memory requirement—generally the most critical
resource in determining the complexity of the problems that can be solved. Applications that
require generating over 1 million OBDD vertices are now routinely performed on workstation
computers.

2. OPERATIONS

Let us introduce some notation for describing operations on Boolean functions. We will use
the standard operations of Boolean algebra: + for OR, - for AND, @ for EXCLUSIVE-OR and
an overline for NOT. In addition, we will use the symbol & to indicate the complement of
the EXCLUSIVE-OR operation (sometimes referred to as EXCLUSIVE-NOR). We will also use
summation (3°) and product (J]) notation in reference to Boolean sums (OR) and products
(AND). Observe that these operations are defined over functions as well as over the Boolean
values O and 1. For example, if f and g are functions over some set of variables, then f + g is
itself a function A over these variables. For some assignment @ of values to the variables, A(a)
yields 1 if and only if either f(d@) or g(@) yields 1. The constant functions, yielding either 1 or
0 for all variable assignments, are denoted 1 and 0, respectively.

The function resulting when some argument z to a function f is assigned a constant value k
(either O or 1) is called a restriction of f (other references call this a “cofactor” of f [Brayton
et al 1984]) denoted f|,. .. Given the two restrictions of a function with respect to a variable,
the function can be reconstructed as
f = E'flz«—() + z'flx(-—o
This identity is commonly referred as the Shannon expansion of f with respect to z, although
it was originally recognized by Boole [Brown 1990].
A variety of other useful operations can be defined in terms of the algebraic operations plus the
restriction operation. The composition operation, where a function g is substituted for variable
z of function f is given by the identity
flzc—g = ?'f'zq—0+g'f|x+—l_'

The variable quantification operation, where some variable z to function f is existentially or
universally quantified is given by the identities

kf = f|a:4—-0+ flz =1

Ve f = flzo—O'f'z«—l

Some researchers prefer to call these operations smoothing (existential) and consensus (universal)
to emphasize that they are operations on Boolean functions, rather than on truth values [Lin et al
1990}

10

(o)
|
:
1

By

Figure 6: Example Arguments to APPLY operation. Vertices are labeled for identification
during the execution trace.

3. CONSTRUCTION AND MANIPULATION

A number of symbolic operations on Boolean functions can be implemented as graph zlgorithms
applied to the OBDDs. These algorithms obey an important closure property—given that the
arguments are OBDDs obeying some ordering, the result will be an OBDD obeying the same
ordering. Thus we can implement a complex manipulation with a sequence of simpler ma-
nipulations, always operating on OBDDs under a common ordering. Users can view a library
of BDD manipulation routines as an implementation of a Boolean function abstract data type.
Except for the selection of a variable ordering, all of the operations are implemented in a purely
mechanical way. The user need not be concerned with the details of the representation or the
implementation.

3.1. The APPLY Operation

The APPLY operation generates Boolean functions by applying algebraic operations to other
functions. Given argument functions f and g, plus binary Boolean operator (op), (c.g., AND
or OR) APPLY returns the function f (op) g. This operation is central to a symbolic Boolean
manipulator. With it we can complement a function f by computing f @ 1. Given functions
f and g, and “don’t care” conditions expressed by the function d (i.c., d(Z) yields 1 for those
variable assignments Z for which the function values are unimportant,) we can test whether f
and g are equivalent for all “care” conditions by computing (f @ g) + d and testing whether the
result is the function 1. We can also construct the OBDD representations of the output functions
of a combinational logic gate network by “symbolically interpreting” the network. That is, we
start by representing the function at each primary input as an OBDD consisting of a test of a
single variable. Then, proceeding in order through the network, we use the APPLY operation to
construct an OBDD representation of each gate output according to the gate operation and the

11

/™

Ap,B

/7
7/

V4
A2,B2
'\
A6.B2 A¢,Bs
” .
[\ /i
As3,B2 As5,B2 A3,B4
i\

A4,B3 As,B4

Figure 7: Execution Trace for APPLY operation with operation +. Each evaluation step has
as operands a vertex from each argument graph.

OBDDs computed for its inputs.

The APPLY algorithm operates by traversing the argument graphs depth-first, while maintaining
two hash tables: one to improve the efficiency of the computation, and one to assist in producing
a maximally reduced graph. Note that whereas earlier presentations treated the reduction to
canonical form as a separate step [Bryant 1986], the following algorithm produces a reduced
form directly. To illustrate this operation, we will use the example of applying the + operation to
the functions f(a, b, c) = (a+b)<+d and ¢g(a, b, c) = (a<)+d, having the OBDD representations
shown in Figure 6.

The implementation of the APPLY operation relies on the fact that algebraic operations “com-
mute” with the Shannon expansion for any variable z:

flopyg = Z-(flz—0 (9P) 9lz) + 2-(flz=1 (oP) 9lz—1) (1)

Observe that for a function f represented by an OBDD with root vertex r, the restriction with
respect to a variable z such that z < var(r;) can be computed simply as:

ry, @ <var(ry)
flz b lo(ry), z=var(r;)andb=0
hi(ry), z=var(ry)andb=1

That is, the restriction is represented by the same graph, or one of the two subgraphs of the root.

Equation 1 forms the basis of a recursive procedure for computing the OBDD representation of
f (op) g. For our example, the recursive evaluation structure is illustrated in Figure 7. Note
that each evaluation step is identified by a vertex from each of the argument graphs. Suppose
functions f and g are represented by OBDDs with root vertices r; and r,, respectively. For
the case where both r; and r, are terminal vertices, the recursion terminates by returning an
appropriately labeled terminal vertex. In our example, this occurs for the evaluations A4, B;, and

12

Figure 8: Result Generation for APPLY operation. The recursive calling structure naturally
leads to an unreduced graph (left). By applying reduction rules at the end of each recursive call,
the reduced graph is generated directly (right).

As,B4. Otherwise, let variable = be the splirting variable, defined as the minimum of variables
var(r) and var(r,). OBDDs for the functions £, ¢ (0p) 9l 0 80d flz 1 (0P) 9lz 1
are computed by recursively evaluating the restrictions of f and g for value 0 (indicated in Figure
7 by the dashed lines) and for value 1 (indicated by solid lines). For our example, the initial
evaluation with vertices A;, B; causes recursive evaluations with vertices Az, B, and Ag, Bs.

To implement the APPLY operation efficiently, we add two more refinements to the procedure
described above. First, if we ever reach a condition where one of the arguments is a terminal
vertex representing the “dominant” value for operation (op) (e.g., 1 for OR and 0 for AND),
then we can stop the recursion and return an appropriately labeled terminal vertex. This occurs
in our example for the evaluations As, B, and A3, B4. Second, we avoid ever making multiple
recursive calls on the same pair of arguments by maintaining a hash table where each entry has
as key a pair of vertices from the two arguments and as datum a vertex in the generated graph.
At the start of an evaluation for arguments u and v, we check for an entry with key (u, v) in
this table. If such an entry is found, we return the datum for this entry, thereby avoiding any
further recursion. If no entry is found, then we follow the steps described above, creating a new
entry in the table before returning the result. In our example, this refinement avoids multiple
evaluations of the arguments A3, B, and As, B;. Observe that with this refinement, the evaluation
structure is represented by a directed acyclic graph, rather than the more familiar tree structure
for recursive routines.

Each evaluation step returns as result a vertex in the generated graph. The recursive evaluation
structure naturally defines an unreduced graph, where each evaluation step yields a vertex labeled
by the splitting variable and having as children the results of the recursive calls. For our example,
this graph is illustrated on the left hand side of Figure 8. To generate a reduced graph directly,
cach evaluation step attempts to avoid creating a new vertex by applying tests corresponding
to the transformation rules described in Section 1.2. Suppose an evaluation step has splitting

13

Figure 9: Example of RESTRICT operation. Restricting variable b of the argument (left) to
value 1 involves bypassing vertices labeled by b (center), and reducing the graph (right).

variable z, and the recursive evaluations return vertices v and v;. First we test whether vo = vy,
and if so return this vertex as the procedure result. Second, we test whether the generated graph
already contains some vertex v having var(v) = z, lo(v) = vo, and hi(v) = v;. This test is
assisted by maintaining a second hash table containing an entry for each nonterminal vertex v in
the generated graph with key (var(v), hi(v), lo(v)). If the desired vertex is found, it is returned
as the procedure result. Otherwise, a vertex is added to the graph, its entry is added to the hash
table, and the vertex is returned as the procedure result. Similarly, terminal vertices are entered
in the hash table having their labels as keys. A new terminal vertex is gencrated only if one
with the desired label is not already present. For our example, this process avoids creating the
shaded vertices shown on the left hand side of Figure 8. Instead, the graph on the right hand
side is generated directly. Observe that this graph represents the function @ + b-c + d, which
is indeed the result of applying the OR operation to the two argument functions.

The use of a table to avoid multiple evaluations of a given pair of vertices bounds the comp'exity
of the APPLY operation and also yields a bound on the size of the result. That is, suppose
functions f and g are represented by OBDDs having m; and m, vertices, respectively. Then,
there can be at most m; m, unique cvaluation arguments, and each evaluation adds at most one
vertex to the generated result. Given a good implementation of the hash tables, each evaluation
step can be performed, on average, in constant time. Thus, both the complexity of the algorithm
and the size of the generated result must be O(m; m,).

3.2. The RESTRICT Operation

Computing a restriction to a function represented by any kind of BDD is straightforward. To
restrict variable z to value k, we can simply redirect any arc into a vertex v having var(v) = z
to point either to lo(v) for k = 0, or o hi(v) for k = 1. Figure 9 illustrates the restriction of
variable b in the function b-c + a-}-E to the value 1. With the original function given by the
OBDD on the left, redirecting the arcs has the effect of bypassing any vertex labeled by b, as
illustrated in the center.

14

As this example shows, a direct implementation of this technique may yield an unreduced
graph. Instead, the operation is implemented by traversing the original graph depth-first. Each
recursive call has as argument a vertex in the original graph and returns as result a vertex in the
generated graph. To ensure that the generated graph is reduced, the procedure maintains a hash
table with an entry for each vertex in the generated graph, applying the same reduction rules
as those described for the APPLY operation. For our example, the result would be an OBDD
representation of the function ¢ as shown on the right hand side of the Figure 9.

Computing the restriction of a function f having an OBDD representation of m; vertices involves
at most m, recursive calls, cach generating at most one vertex in the result graph. Using a good
hash table implementation, each recursive step requires constant time on average. Thus, both
the complexity of the algorithm and the size of the generated result must be O(m;).

33. Derived Operations

As was described in Section 2, a variety of operations on Boolean functions can be expressed in
terms of algebraic and restriction operations. The APPLY and the RESTRICT algorithms therefore
provide a way to implement these other operations. Furthermore, for each of these operations,
both the complexity and the size of the generated graph are bounded by some polynomial function
of the argument functions. For function f, let m; denote the size of its OBDD representation.
Given two functions f and g, and “don’t care” conditions expressed by a function d, we can
compute the equivalence of f and g for the “care” conditions in time O(m;m, m,). We can
compute the composition of functions f and g with two restrictions and three calls to APPLY.
This approach would have time complexity O(m3} m?). By implementing the entire computation
with one traversal, this complexity can be reduced 10 O(m; m2) [Bryant 1986). Finally, we can
compute the quantification of a variable in a function f in time O(m}).

34. Performance Characteristics

A problem is solved using OBDDs by expressing the task as a series of operations on Boolean
functions such as those discussed above. As we have seen, all of these operations can be im-
plemented by algorithms having complexity polynomial in the sizes of the OBDDs representing
the arguments. As a result, OBDD-based symbolic Boolean manipulation has two advantages
over other common approaches. First, as long as the graphs remain of reasonable size, the total
computation remains tractable. Second, although the graph sizes can grow with each successive
operation, any single operation has reasonable worst case performance. In contrast, most other
representations of Boolean functions lack this “graceful degradation” property. For example,
even if a function has a reasonably compact sum of products representation, its complement
may be of exponential size [Brayton et al 1984].

35. Implementation Technigues

From the standpoint of implementation, OBDD-based symbolic manipulation has very differ-
ent characteristics from many other computational tasks. During the course of a computation,

15

